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0. Abstract

when H — oo : single layer NN with a prior = GP (Neal, 1994)

contribution: "Analytic forms"are derived for the "Covariance Function" of the GP corresponding
to networks with "Sigmoidal & Gaussian " hidden units

1. Introduction

In practice, will not use co hidden units — overfitting!

BUT, in Bayesian, no worry!

Neal(1994) : Infinite NN = GP, but does not give the covariance function
this paper shows...

e for "certain weight priors" and "transfer functions" in NN,

the covariance function of GP can be calculated "ANALYTICALLY"

calculating analytically allows...

e 1) predictions to be made in O(n?) (n = number of training examples )

e 2)facilitates the comparison of the properties of NN with co hidden units, as compared to
other GP priors

e 3)dramatically reduces the dimensionality of MCMC integrals, thus improve speed of
convergence
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1.1 From "prior on WEIGHTS" to "prior on FUNCTIONS"

(original)
usually specified "hierarchically"

(P(w) = [P(w | 6)P(#)d0 ... integrate out hyperprior )

(our case)
do not do as above

('since it introduces weight correlations, which prevents convergence to GP )

weight posterior : P(w | t, 0)

predictive distribution for y, : P(y. | t,0)

predictive distribution
(1) P(y« | ,0) = [5(y. (w)) P(w | t,0)dw

((1) can be viewed as making prediction, using "priors over functions" rather than "prior over
weights")

( by using Bayes Theorem, P(w | t,0) = P(t | w)P(w | 6)/P(t | 8), and
P(t | w) = [P(t|y)i(y — f(w))dy)

() P (y. | ,6) =

fi(w)) 6(y — f(w))P(w | 0)dwdy

(since P (y.,y | 0) = P (y. | 4,0) P(y | 0) = [ 3 (v — fu(w)d(y — f(w))P(w | O)dw)
(B) P (ys | £,0) = 5 [ P(t | )P (3. | 4,0) Py | 0)dy = [P (y. | y,6) P(y | t,6)dy

— Result : view of "priors over functions" (=P (v« | y,0))

In general, we can use

e 1) weight space view
e 2)function space view

For infinite NN, more useful to use 2) function space view

2. Gaussian Process

widely used covariance functions

e stationary: C(z,z') = C(z — z')
e isotropic: C(h*) = C(h) where h* =z — 2’ and h =| h*|
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2-1. Prediction with GP

data : generated from "prior" stochastic process + independent Gaussian "noise" added

e 1) prior covariance function : Cp(z;, x;)
e 2)noise process : Cy (z;,x;) = 024;

as both 1) and 2) are Gaussian, the integral can be done analytically!

P(y. |t,0)

* mean y(cc*) kL (x.) (Kp+ Ky) 't
«)

«)
e variance : 0% (@.) = Cp (., 2.) — k% (x.) (Kp + Kn) ' kp (@.)
where [K,|;; = Cy (zi,z;) fora= P,N , kp (z.) = (Cp (24, 1) ,...,Cp (@4, 2y))"

and 012; (z.) gives the "error bars" of the prediction.

3. Covariance Functions for Neural
Network
input-to-hidden weights : u
f@) =b+ 31, vih (x5 uy)
e mean: Bw(f(z)] =0
Ew|[f(z)f (z')] = o} + Za%Eu [hj(z; u)h; (2';u)]
=0l + Ha%Eu [h(z; u)h (2';u)]

= W’ By [h(z; u)h (2';u))

(letting w? /H as a scale of 02 )

obtain covariance function by calculating E,, [h(x;u)h (2';u)]

Calculate V (z, ') & pu [h(z;u)h (2';u)]
by using 2 specific transfer functions ( with Gaussian weight priors )

e 1) Sigmoidal function
e 2) Gaussian
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3.1 Sigmoidal transfer function

e very common choice in NN
e h(z;u)=2 (uo + Zle uj:cz-) (where u ~ N(0,%))
o ®(2) =2/y/7 [ e ¥ dt (erffunction, CDF of Gaussian)

Vot (2, 2') = — ® (u'z) ® (u’@') exp(—3u’ T u)du
(2m) 2 |2
Vit (z,2') = 2sin~! 2228 ( this is not stationary! )
et (2, ) = |/ (14237 £3) (142575 Y
But, if
e setd = diag(a%,a%, ... ,0'%)

o lef* 2" > (1+20F) /207

Then, Vs (&, 2') ~ 1 — 26/m, (where 8 is the angle between  and ' )

3.2 Gaussian transfer function

e very common choice in NN

( Gaussian basis function are often used in RBF networks )

o h(z;u) = exp|—(z — u)’ (z — u)/203] (where u ~ N (0,021) )
—u)T (z—u z' —u)’ (z'—u wTu
Vo) = L fenp ey,

(by completing the square & integrating out u )

d T f
Vo (z,2') = (Z—Z) exp{—;i—f} exp{—%‘gzx)} exp{— ’”;Tf } (t his is not stationary!)

where 1/02 = 2/02 + 1/02,0% = 202 + 04 /02 and 02, = 202 + 02

But, If 02 — o0

Ve (z,2') exp{—(:c — ) (z—2) /403}4.

For a finite value of o2,

Ve (z,2') is a stationary covariance function "modulated" by the Gaussian decay function
exp(—aTx/20%,) exp(—x" @' /20%,).

Clearly if 02, is much larger than the largest distance in z -space then the predictions made with
Ve and


af://n118
af://n139

a Gaussian process with only the stationary part of Vg will be very similar.

3.3 Comparing covariance functions

ANSURtREY =

ot
=2
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