[Paper review 10]

Computing with Infinite Networks

(Christopher K. I. Williams, 1997)

[Contents]

- 0. Abstract
- 1. Introduction
- 2. Gaussian Process
- 3. Covariance Functions for Neural Network

0. Abstract

when $H
ightarrow \infty$: single layer NN with a prior = GP (Neal, 1994)

contribution: "Analytic forms"are derived for the "Covariance Function" of the GP corresponding to networks with "Sigmoidal & Gaussian " hidden units

1. Introduction

In practice, will not use ∞ hidden units \rightarrow overfitting!

BUT, in Bayesian, no worry!

Neal(1994) : Infinite NN = GP, but does not give the covariance function

this paper shows...

• for "certain weight priors" and "transfer functions" in NN,

the covariance function of GP can be calculated "ANALYTICALLY"

calculating analytically allows...

- 1) predictions to be made in $O(n^3)$ (n = number of training examples)
- + 2) facilitates the comparison of the properties of NN with ∞ hidden units, as compared to other GP priors
- 3) dramatically reduces the dimensionality of MCMC integrals, thus improve speed of convergence

1.1 From "prior on WEIGHTS" to "prior on FUNCTIONS"

(original)

usually specified "hierarchically"

($P(w) = \int P(w \mid \theta) P(\theta) d heta$... integrate out hyperprior)

(our case)

do not do as above

(since it introduces weight correlations, which prevents convergence to GP)

weight posterior : $P(m{w} \mid m{t}, m{ heta})$ predictive distribution for y_* : $P(y_* \mid m{t}, m{ heta})$

predictive distribution

(1) $P\left(y_{*} \mid oldsymbol{t},oldsymbol{ heta}
ight) = \int \delta\left(y_{*} - f_{*}(oldsymbol{w})
ight) P(oldsymbol{w} \mid oldsymbol{t},oldsymbol{ heta}) doldsymbol{w}$

((1) can be viewed as making prediction, using "priors over functions" rather than "prior over weights")

(by using Bayes Theorem, $P(\boldsymbol{w} \mid \boldsymbol{t}, \boldsymbol{\theta}) = P(\boldsymbol{t} \mid \boldsymbol{w})P(\boldsymbol{w} \mid \boldsymbol{\theta})/P(\boldsymbol{t} \mid \boldsymbol{\theta})$, and $P(\boldsymbol{t} \mid \boldsymbol{w}) = \int P(\boldsymbol{t} \mid \boldsymbol{y})\delta(\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{w}))d\boldsymbol{y}$) (2) $P(y_* \mid \boldsymbol{t}, \boldsymbol{\theta}) = \frac{1}{P(\boldsymbol{t} \mid \boldsymbol{\theta})} \iint P(\boldsymbol{t} \mid \boldsymbol{y})\delta(y_* - f_*(\boldsymbol{w}))\delta(\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{w}))P(\boldsymbol{w} \mid \boldsymbol{\theta})d\boldsymbol{w}d\boldsymbol{y}$

(since $P(y_*, \boldsymbol{y} \mid \boldsymbol{\theta}) = P(y_* \mid \boldsymbol{y}, \boldsymbol{\theta}) P(\boldsymbol{y} \mid \boldsymbol{\theta}) = \int \delta(y_* - f_*(\boldsymbol{w})\delta(\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{w}))P(\boldsymbol{w} \mid \boldsymbol{\theta})d\boldsymbol{w})$ (3) $P(y_* \mid \boldsymbol{t}, \boldsymbol{\theta}) = \frac{1}{P(\boldsymbol{t}\mid\boldsymbol{\theta})} \int P(\boldsymbol{t} \mid \boldsymbol{y})P(y_* \mid \boldsymbol{y}, \boldsymbol{\theta}) P(\boldsymbol{y} \mid \boldsymbol{\theta})d\boldsymbol{y} = \int P(y_* \mid \boldsymbol{y}, \boldsymbol{\theta}) P(\boldsymbol{y} \mid \boldsymbol{t}, \boldsymbol{\theta})d\boldsymbol{y}$

ightarrow Result : view of "priors over functions" (= $P\left(y_{*} \mid oldsymbol{y}, oldsymbol{ heta}
ight)$)

In general, we can use

- 1) weight space view
- 2) function space view

For infinite NN, more useful to use 2) function space view

2. Gaussian Process

widely used covariance functions

- stationary : C(x, x') = C(x x')
- isotropic : $C(h^*) = C(h)$ where $h^* = x x'$ and $h = \mid h^* \mid$

2-1. Prediction with GP

data : generated from "prior" stochastic process + independent Gaussian "noise" added

- 1) prior covariance function : $C_P(x_i, x_j)$
- 2) noise process : $C_N\left(x_i,x_j
 ight)=\sigma_
 u^2\delta_{ij}$

as both 1) and 2) are Gaussian, the integral can be done analytically!

 $P(y_* \mid \boldsymbol{t}, \boldsymbol{\theta})$

- mean : $\hat{y}\left(oldsymbol{x}_{*}
 ight)=oldsymbol{k}_{P}^{T}\left(oldsymbol{x}_{*}
 ight)\left(K_{P}+K_{N}
 ight)^{-1}oldsymbol{t}$
- variance : $\sigma_{\hat{y}}^{2}(\boldsymbol{x}_{*}) = C_{P}(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}) \boldsymbol{k}_{P}^{T}(\boldsymbol{x}_{*})(K_{P} + K_{N})^{-1}\boldsymbol{k}_{P}(\boldsymbol{x}_{*})$

where $\left[K_{lpha}
ight]_{ij}=C_{lpha}\left(x_{i},x_{j}
ight)$ for lpha=P,N $\,$, $\,k_{P}\left(x_{*}
ight)=\left(C_{P}\left(x_{*},x_{1}
ight),\ldots,C_{P}\left(x_{*},x_{n}
ight)
ight)^{T}$

and $\sigma_{\hat{y}}^2\left(x_*
ight)$ gives the "error bars" of the prediction.

3. Covariance Functions for Neural Network

input-to-hidden weights : u

$$f(x) = b + \sum_{j=1}^{H} v_j h\left(oldsymbol{x};oldsymbol{u}_j
ight)$$

- mean : $E\boldsymbol{w}[f(\boldsymbol{x})] = 0$
- variance :

$$egin{aligned} Eoldsymbol{w}\left[f(oldsymbol{x})f\left(oldsymbol{x}'
ight)
ight] &= \sigma_b^2 + \sum_j \sigma_v^2 Eoldsymbol{u}\left[h_j(oldsymbol{x};oldsymbol{u})h_j\left(oldsymbol{x}';oldsymbol{u}
ight)
ight] \ &= \sigma_b^2 + H \sigma_v^2 Eoldsymbol{u}\left[h(oldsymbol{x};oldsymbol{u})h\left(oldsymbol{x}';oldsymbol{u}
ight)
ight] \end{aligned}$$

$$=\omega^2 E_{oldsymbol{u}}\left[h(oldsymbol{x};oldsymbol{u})h\left(oldsymbol{x}';oldsymbol{u}
ight)
ight]$$

(letting ω^2/H as a scale of σ_v^2)

obtain covariance function by calculating $E_{m{u}}\left[h(m{x};m{u})h\left(m{x}';m{u}
ight)
ight]$

Calculate $V\left(oldsymbol{x},oldsymbol{x}'
ight) \stackrel{ ext{def}}{=} Eoldsymbol{u}\left[h(oldsymbol{x};oldsymbol{u})h\left(oldsymbol{x}';oldsymbol{u}
ight)
ight]$

by using 2 specific transfer functions (with Gaussian weight priors)

- 1) Sigmoidal function
- 2) Gaussian

3.1 Sigmoidal transfer function

- very common choice in NN
- $h(m{x};m{u})=\Phi\left(u_0+\sum_{i=1}^d u_j x_i
 ight)$ (where $m{u}\sim N(0,\Sigma)$)
- $\Phi(z)=2/\sqrt{\pi}\int_{0}^{z}e^{-t^{2}}dt$ (erf function, CDF of Gaussian)

$$egin{aligned} V_{ ext{erf}}\left(m{x},m{x}'
ight) &= rac{1}{\left(2\pi
ight)^{rac{d+1}{2}}\left|\Sigma
ight|^{1/2}}\int\Phi\left(m{u}^Tm{ ilde{x}}
ight)\Phi\left(m{u}^Tm{ ilde{x}}'
ight)\expigg(-rac{1}{2}m{u}^T\Sigma^{-1}m{u}igg)dm{u} \ V_{ ext{erf}}\left(x,x'
ight) &= rac{2}{\pi} ext{sin}^{-1}rac{2 ilde{x}^T\Sigma ilde{x}'}{\sqrt{\left(1+2 ilde{x}^T\Sigma ilde{x}
ight)\left(1+2 ilde{x}'^T\Sigma ilde{x}'
ight)}} \ ext{(this is not stationary!)} \end{aligned}$$

But, if

- set $\Sigma = \operatorname{diag}(\sigma_0^2, \sigma_I^2, \dots, \sigma_I^2)$
- $ullet |x|^2, |x'|^2 \gg \left(1+2\sigma_0^2
 ight)/2\sigma_L^2$

Then, $V_{
m erf}\left(m{x},m{x}'
ight)\simeq 1-2 heta/\pi,$ (where heta is the angle between $m{x}$ and $m{x}'$)

3.2 Gaussian transfer function

• very common choice in NN

(Gaussian basis function are often used in RBF networks)

• $h(m{x};m{u}) = \expig[-(m{x}-m{u})^T(m{x}-m{u})/2\sigma_g^2ig]$ (where $u \sim N\left(0,\sigma_u^2 I
ight)$)

$$V_{G}\left(oldsymbol{x},oldsymbol{x}'
ight)=rac{1}{\left(2\pi\sigma_{u}^{2}
ight)^{d/2}}\int\exp{-rac{\left(oldsymbol{x}-oldsymbol{u}
ight)^{T}(oldsymbol{x}-oldsymbol{u})^{T}(olds$$

(by completing the square & integrating out u)

$$\begin{split} V_G\left(x,x'\right) &= \left(\frac{\sigma_e}{\sigma_u}\right)^d \exp\left\{-\frac{x^T x}{2\sigma_m^2}\right\} \exp\left\{-\frac{(x-x')^T (x-x')}{2\sigma_s^2}\right\} \exp\left\{-\frac{x^T x'}{2\sigma_m^2}\right\} \quad \text{(t his is not stationary!)} \\ \text{where } 1/\sigma_e^2 &= 2/\sigma_g^2 + 1/\sigma_u^2, \sigma_s^2 = 2\sigma_g^2 + \sigma_g^4/\sigma_u^2 \text{ and } \sigma_m^2 = 2\sigma_u^2 + \sigma_g^2 \end{split}$$

But, If
$$\sigma_{u}^{2}
ightarrow \infty$$

 $V_{G}\left(x,x'
ight) \propto \exp\left\{-\left(x-x'
ight)^{T}\left(x-x'
ight)/4\sigma_{g}^{2}
ight\}^{4}.$

For a finite value of σ_u^2 ,

 $V_G(x, x')$ is a stationary covariance function "modulated" by the Gaussian decay function $\exp\left(-x^T x/2\sigma_m^2\right)\exp\left(-x'^T x'/2\sigma_m^2\right)$.

Clearly if σ_m^2 is much larger than the largest distance in x -space then the predictions made with V_G and

a Gaussian process with only the stationary part of V_G will be very similar.

3.3 Comparing covariance functions

시공간자료분석 수강 후에...